The Heterogeneous Information Network (HIN) is a graph data model in which nodes and edges are annotated with class and relationship labels. Large and complex datasets, such as Yago or DBLP, can be modeled as HINs. Recent work has studied how to make use of these rich information sources. In particular, meta-paths, which represent sequences of node classes and edge types between two nodes in a HIN, have been proposed for such tasks as information retrieval, decision making, and product recommendation...

Information in many applications, such as mobile wireless systems, social networks, and road networks, is captured by graphs. In many cases, such information is uncertain. We study the problem of querying a probabilistic graph, in which vertices are connected to each other probabilistically. In particular, we examine “source-to-target” queries (or ST-queries), such as computing the shortest path between two vertices...

An Indexing Framework

for Queries on Probabilistic Graphs

A heterogeneous information network (HIN) is a graph model in which objects and edges are annotated with types. Large and complex databases, such as YAGO and DBLP, can be modeled as HINs. A fundamental problem in HINs is the computation of closeness, or relevance, between two HIN objects. Relevance measures can be used in various applications, including entity resolution, recommendation, and information retrieval...

Meta Structure: Computing Relevance

in Large Heterogeneous Information Networks

Discovering Meta-Paths

in Large Heterogeneous Information Networks

The Heterogeneous Information Network (HIN) is a graph data model in which nodes and edges are annotated with class and relationship labels. Large and complex datasets, such as Yago or DBLP, can be modeled as HINs. Recent work has studied how to make use of these rich information sources. In particular, meta-paths, which represent sequences of node classes and edge types between two nodes in a HIN, have been proposed for such tasks as information retrieval, decision making, and product recommendation...

©2019 by HINCare.