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ABSTRACT

The Heterogeneous Information Network (HIN) is a graph data
model in which nodes and edges are annotated with class and rela-
tionship labels. Large and complex datasets, such as Yago or DBLP,
can be modeled as HINs. Recent work has studied how to make use
of these rich information sources. In particular, meta-paths, which
represent sequences of node classes and edge types between two
nodes in a HIN, have been proposed for such tasks as information
retrieval, decision making, and product recommendation. Current
methods assume meta-paths are found by domain experts. However,
in a large and complex HIN, retrieving meta-paths manually can
be tedious and difficult. We thus study how to discover meta-paths
automatically. Specifically, users are asked to provide example pairs
of nodes that exhibit high proximity. We then investigate how to gen-
erate meta-paths that can best explain the relationship between these
node pairs. Since this problem is computationally intractable, we
propose a greedy algorithm to select the most relevant meta-paths.
We also present a data structure to enable efficient execution of this
algorithm. We further incorporate hierarchical relationships among
node classes in our solutions. Extensive experiments on real-world
HIN show that our approach captures important meta-paths in an
efficient and scalable manner.

1. INTRODUCTION

Heterogeneous Information Networks (HINs), such as Yago [17]
and DBpedia [2], has attracted plenty of attention in recent years.
These graph data sources, which contains a gigantic number of inter-
related facts, enables discovery of interesting knowledge. Yago, for
instance, stores over 10 million entities and 120 million facts [17].
Figure 1 illustrates a knowledge base, a kind of HIN, which captures
the relationships among entities (or graph nodes). Each node and
edge is associated with a “label”, indicative of the node class and
edge type, respectively. For example, Barack Obama (node 1)
has class labels USPresident and Writer. One of his offsprings is
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Figure 1: HIN with class hierarchy

Malia Obama (node 5), as indicated by the hasChild edge. A class
hierarchy describes the relationships among node class labels, as
shown in Figure 1(a).

The problem of understanding the vast amount of information
modeled in HINs has received a lot of interest. In particular, the
concept of meta-paths has been proposed [10, 19,20] to explain how
nodes are related. A meta-path is a sequence of node classes and
edge types between two given nodes. In Figure 1, Barack Obama
and Michelle Obama are connected by the following three different
meta-paths:!

. i hasChild™!
USPresident "25¢h1d pergop naschi

USPresident ™29, yspoliticalParty

USFirstLady,

—1
memberOf— USFirstLady,

. . .
USPresident 9522n9f, Country citizenOf USFirstLady.

'We use hasChild~! to denote the opposite direction of the edge
labeled hasChild.



Meta-paths can be used to predict the closeness, or similarity, among
graph nodes. This is especially useful when an edge between two
nodes does not exist. As in Figure 1, assume, for the sake of argu-
ment, that there is no edge between Barack Obama and Michelle
Obama. However, the two nodes are closely related, as illustrated
by the three meta-paths above. Notice that a meta-path can have
a path length of more than one. Thus, it can be used to explain
sophisticated relationships among nodes that cannot be depicted
by a single edge. Recently, researchers have studied how to use
meta-paths between two heterogeneous graph nodes to quantify
their similarity. They have proposed meta-path—based similarity
measures (e.g., path count (PC) [19], path constraint random walk
(PCRW) [10], and HeteSim (HS) [16]). These metrics on meta-
paths between two nodes can be used for link prediction, product
recommendation, and decision making. For example, in bibliog-
raphy networks (e.g., DBLP [11]), these measures can be used to
predict relationships among authors and research topics. In a rec-
ommendation system that stores salesperson, customer, and product
information, these similarity values can be used to suggest prod-
ucts to be promoted to customers, and advise salespersons about
potential customers [10, 19, 20].

Prior works. Although meta-paths are useful, the important is-
sue of how to generate them has not been well studied. Most exist-
ing work assumes that meta-paths are provided by domain experts.
While this assumption may be true for a relatively simple HIN (e.g.,
DBLP [11]), we question its validity for larger ones such as Yago
and DBpedia. For these cases, millions of nodes and edges are
annotated with thousands of labels, and node class labels exhibit
complex hierarchical relationships (as in Figure 1). Moreover, long
meta-paths can be extremely difficult to discover, especially if this
is done without the aid of machines. The only meta-path generation
solution is proposed in [10], and yields meta-paths within a fixed
length /. However, it is not clear how / should be set. As we found
in our experiments, the performance and effectiveness of their ap-
proach is very sensitive to /. In [5], a method called AMIE was
proposed to mine association rules from HIN. While association
rules are similar to meta-paths, the output of AMIE is “global”,
i.e., the individual preferences of a user are not considered. On
the contrary, our method can be customized; a user can provide her
opinions about the meta-paths to be generated, through example
node pairs, as we discuss next. Moreover, AMIE does not use in
any special manner the hierarchy of node classes, which we found
to be very important in understanding relationships.

Our goal is to develop a systematic and user-friendly solution
for efficiently discovering important meta-paths in large knowledge
bases. In our approach, users provide example pairs of nodes that
exhibit high proximity (e.g., George W. Bush and Laura Bush).
They do not need to specify a maximum length /. Meta-paths
that best explain the similarity between these node pairs are then
automatically generated. A simple way to do this is to enumerate all
the possible meta-paths and the possible meta-path subsets between
the given node pairs, and select those that have the highest similarity.
Unfortunately, this solution is impractical. As pointed out in [10],
the number of possible meta-paths for a given heterogeneous graph
grows exponentially with the length of a meta-path. Even if all these
meta-paths are known, selecting the most important subsets among
them is an NP-complete problem [10]. There is thus a need for a
better approach that avoids enumerating all possible meta-paths.

Our solutions. We develop the Forward Stagewise Path Gen-
eration algorithm (or FSPG), which derives meta-paths that best
predict the similarity between the given node pairs. Inspired by
machine learning algorithms used for feature selection [4], FSPG
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Figure 2: System framework

contains greedy strategies that generate the most relevant subset of
meta-paths under a given regression model. Another advantage of
FSPG is that it supports existing meta-path-based similarity mea-
sures — PC and PCRW. This is because F'SPG adopts our proposed
metric, called Biased Path Constrained Random Walk, or BPCRW,
which generalizes PC and PCRW. We will explain how parameters
of BPCRW can be tuned to get the best out of these two measures.
To facilitate the efficient execution of FSPG, we investigate a data
structure called the GreedyTree. This data structure is easily
constructed and efficiently supports the online generation of rele-
vant meta-paths. We further explain how to extend our solution to
incorporate class hierarchy information in our solutions.

We have performed extensive experiments on two real knowledge
bases, namely DBLP and Yago. Our results show FSPG allows
for a significant improvement in the accuracy of link prediction —
between 10% and 15%. Moreover, F SPG detects new meta-paths not
provided by experts, and this leads to better results than only using
the meta-paths provided by experts. We show that FSPG computes
meta-paths in an efficient and scalable manner, and achieves an
improvement in time of up to two orders of magnitude. We further
demonstrate that class hierarchy information significantly increases
accuracy of the similarity model, with negligible overhead. We
show that FSPG discovers more association rules than AMIE. We
further perform a case study, where human users provide opinions
on generated meta-paths; FSPG did well in this experiment.

Figure 2 illustrates our high-level approach for discovering meta-
paths. In Step 1, users provide example pairs to FSPG. This algo-
rithm generates meta-paths (Step 2), which are then used to generate
new node pairs (Step 3), e.g., via similarity search and join oper-
ations [18,27]. From these node pairs, users select those that are
indeed similar (Step 4). The accepted node pairs are then input to
FSPG to iteratively refine the meta-paths generated (Step 5). An
advantage of this framework is flexibility: users can review and
change the meta-paths generated in Step 2; they can also provide
new example pairs later after the meta-paths are generated. In this
paper, we focus on the design and implementation of FSPG (Step 2).

The rest of this paper is organized as follows. We introduce the
formal settings and similarity measures in Section 2. We present
FSPG and GreedyTree in Section 3, and evaluate them experi-
mentally in Section 4. We review the related work in Section 5, and
conclude in Section 6.

2. META-PATH BASED SIMILARITY

We now discuss the formal model of HINs and our problem set-
tings. We then review existing meta-path-based similarity functions,
and present a method to generalize them.

2.1 Problem Definition

We model the heterogeneous information network as in [20]:

DEFINITION 1
A Heterogeneous Information Network is a directed graph G =

(HETEROGENEOUS INFORMATION NETWORK).



(V,E,®,¥), where V is the set of nodes (or entities) of the graph;
E CV XV is the set of edges connecting the nodes in V; and ® and
W are functions for labeling nodes and edges. We have ® : V — 24,
where A is the set of node classes, and ¥ : E — 2R \where R is the
set of edge types.

Many graph datasets can be modeled as HIN such as: ontologies
(Yago [17], DBPedia [2]), and bibliographic networks (DBLP [11]).
Here, we mainly work with knowledge bases (KB) as an instance of
HING .

EXAMPLE 1. Let us revisit the HIN in Figure 1, where a triple
of the form: (Barack Obama,hasChild, Natasha Obama) can be
represented as an edge having type: ¥ (Barack Obama,Natasha
Obama) = {hasChild}. Each entity can be mapped to multiple
types: ®(Barack Obama) = {USPresident, Writer, Person}.

Moreover, in most HINs on the Web — Yago and DBpedia being
prime examples — the classes of the entities are organized in a
hierarchical manner. For instance, USPresident is a subclass of
Leader, and Leader is a subclass of Person. All the classes have
a single root, e.g., Object. They are usually organized in KBs as
nodes in the graph, linked with edges of type subclassOf. Figure 1
shows an example of hierarchical organization of node classes. This
hierarchical organization can affect how one chooses the classes of
nodes in a KB, as we shall see later.

Given a path in G between two entities, there is a corresponding
meta-path that can be derived:

DEFINITION 2 (META-PATH [20]). Givena HIN G =
(V,E,®,¥), a meta-path 1" s a sequence of node class sets
Ci,...,Cy connected by link types eq,. .., en_1: I+ =C, &,

€

Ci% .Gy

We say that a path P = v; AN LV AN ...V, satisfies a meta-
pathlI=C, % ..¢; S ...CifVie{l,...,n}, CG;ND(v;) #
0,and Vi e {1,...,n—1}, {vi,viy1} €E and ¢; € ¥(v;,viy1). In
other words, each entity on the path has a class that exists in the
corresponding class set on the meta-path, and each edge on the path
has a corresponding type.

EXAMPLE 2. In Figure 1, USPresident hasChild, person
Sl
hasChild USFirstLady is satisfied by the path Barack Obama

hasChild hasChild™' .
135N, Natasha Obama —2""° MichelleObama. Another meta-

path that is satisfied by a path between these two nodes is USPresident

f . 1 . .
M) USPoliticalParty memberOf 7, USFirstLady, since Barack

and Michelle Obama are both members of the Democratic Party.

Two entities can have paths that satisfy different meta-paths between
them. The challenge then is finding them and including them in
a model that can describe accurately the relationship between the
nodes. Moreover, we wish to do this when multiple pairs are given:

PROBLEM 1 (RELEVANT META-PATHS). Givena HIN G =
(V,E,®,¥) and a set of e example node pairs A = {(s;,1;) | 1 <i<
e}, find a set of p meta-paths ® = {I1; | 1 <i < p} which accurately
predicts A for a given similarity scoring function & (s,t | ).

For instance, in Yago, the user can provide several pairs of en-
tities of types Person and Country. A citizenOf link between en-
tities of these types shows that a person is a citizen of a country.
When this link is missing, the examples might implicitly suggest

a relationship of residency in a country, as explained by a combi-

. lived| ksAt
nation of meta-paths Person 2N, Country and Person ——%

e s | dl
Institution <24 Coy ntry.

The challenge is then: (i) to find all and only the relevant meta-
paths, and (ii) to train a model able to predict the examples pairs.
Each path between the entities in the examples pairs that is satisfied
by a meta-path in the model contributes to the similarity between
the example entities. Next, we study meta-path based similarity
measures.

2.2 Similarity Function ¢

We now explain how to use a combination of meta-paths to derive
a similarity measure between two entities in a HIN. The similarity
score between two entities s and ¢ is a real number, computed by an
aggregate function F of the similarity scores for each meta-path of a
set®: 0 (s,t|®)=F({o(s,¢ | I;) | 1 <i< p}), where o (s, |I1;)
is a similarity score measuring how “strong” the connection between
two entities s and ¢ given meta-path I1;, ® = {I1;,...,II,}, and F
is an aggregate function over the meta-path scores.

Let us start by explaining how to compute o (s,7 | IT), and discuss
the function F later. We first review the state of the art of meta-path—
based similarity definitions on HINs, and then introduce our general
formulation of these similarity measures.

Path Count (PC) [19]. The simplest form of similarity be-
tween two nodes is the count of the different paths which satisfy
a given meta-path I1. The intuition behind this measure is that the
larger the number of paths satisfy a given configuration is, the more
similar the entities are.

Path-Constrained Random Walk (PCRW) [10]. For a

meta-path IT= Cy &GS Cp, the similarity score between
two entities s and ¢ is defined by the random walk starting at s
and following only paths satisfying I1. It is defined recursively
as follows, with a slight modification to allow for choosing node
classes:

. 1 .
o(vi,t ") = o(x,t HHrl...n ,
it ) = fo oGl o e, T T

G(t,l | Hnn) =1,

where pe, (vi, Ci11) is the set of nodes x which have classes in Cj 1
and are linked by an edge of type e; from v;, and IT"" is the meta-
path IT truncated to the sub-path between C; and C,,. The evaluation
starts at o(s,¢ | IT) = o(s,¢ | I1'"). Essentially, PCRW indicates
the probability that a walker constrained on a particular meta-path
reaches the target node.

PC emphasizes the absolute number of paths satisfying a meta-
path while PCRW weighs the paths based on the neighbourhoods
of nodes along them. Both measures can be generalized in a single
measure, the Biased Path Constrained Random Walk (BPCRW),
defined in a manner similar to PCRW as follows:

. 1
CTIL RS

_ G(x,t\l'IHl"'”),
‘pei (uh Ci+1)‘a x€pPe; (vi,Cit1)

2.1
G(l‘,l ‘ Hn...n) - 1.

When o = 0, BPCRW is the same as PC; when o = 1, the same
as PCRW. If a € (0,1), o balances the number of meta-paths to
be counted and the contribution of neighbors. Particularly, when o
is large, we care more about the number of similar neighbors for
anode; when « is small, we place more emphasis on the number
of paths between two nodes. We will evaluate the effect of o on
BPCRW experimentally in Section 4.

Remarks. Our solutions do not consider two recently proposed
metrics, PathSim and HeteSim. The PathSim measure [20] obtains
similar nodes (or the so-called “peer objects”) for single symmetric



meta-paths. It is not clear how PathSim can handle non-symmetric
meta-paths, which are common in KBs. The HeteSim metric [15,16]
measures the relevance of a single meta-path. Since it does not have
the form of BPCRW (Equation 2.1), it is not supported by our FSPG
solution. We experimentally compare BPCRW and HeteSim for a
given single meta-path in Section 4. An interesting future work is to
extend FSPG to support HeteSim.

2.3 Similarity Aggregate Function F

Following the previous work on meta-path—based link predic-
tion [10, 19], we use a linear regression model for F, which trains a
linear model of the form:

o(s,1|®) =Y wj-o(s|I0;)+wp, (2.2)
I<j<p
where wy, ..., w) are real-valued coefficients. The function F forms

the basis of our meta-path selection algorithm.

3. GENERATING META-PATHS

We now study efficient algorithms for solving Problem 1. As a
matter of fact, an optimal solution for this problem is likely to be
intractable [24]. Even if the paths are known in advance, selecting
only the most relevant paths is difficult: it has been proved in [1,
24] that the problem is NP-hard, and it cannot be approximated
within a constant factor unless P=NP. Therefore, we study efficient
algorithms that do well in the average case. Since relevant paths
may not be known initially, we propose a greedy framework that
starts from a regression model with no meta-paths. We then insert
meta-paths to the model, until a desired accuracy is attained. This
method is inspired by the design of forward selection algorithms [9]
in machine learning. As we will explain, forward selection enables
meta-paths to be generated as needed.

Algorithm Framework. Our solution consists of two phases.
The first phase (Section 3.1) generates meta-paths with only edge
types. To support this step efficiently, we develop an appropriate
data structure (Section 3.2). In the second phase (Section 3.3),
we augment the meta-paths generated in Phase 1 with node class
information, by considering the node class hierarchy. Let us now
study these in detail.

3.1 Phase 1: Link-Only Path Generation

This phase generates meta-paths with only edge types, by using
Forward Stagewise Path Generation (or FSPG). We greedily select
the next most relevant meta-path, and add it as a feature to the regres-
sion model, until the model can fit the example pairs. Specifically,
we build a regression model for the input example pairs; it uses
meta-paths (with only link types) as features and assigns a weight
for each feature. We train this model based on a modified version
of the Least-Angle Regression [4] (LARS). This method tests the
addition of each feature against the model constructed, repeatedly
adding the feature that improves the model the most, until no more
features can be added. While LARS needs to know the whole fea-
ture space at the beginning of regression which means you need to
enumerate all possible meta paths, we propose a heuristic to avoid
this.

To support LARS and to avoid generating irrelevant meta-paths,
we propose a greedy method that iteratively returns the meta-path
with the largest correlation with the partially constructed model. We
initialize the model with the first meta-path found by our greedy
method. Then, at each stage, we continue testing the next meta-path,
by computing its correlation to the currently constructed model. As
in LARS, the criterion for choosing a feature is correlation — each

time we choose the feature that has the largest correlation with the
expected output at this step, so that we can approach the expected
output fastest. At each stage, we insert the meta-path that has the
largest correlation value with the current residual (explained below),
based on a standard cosine function:
m-r

cos(m,r) ] <[] 3.1
where m is the resulting vector of a certain meta-path IT on the
training examples (each entry of m is a BPCRW score o (s,7 | IT) for
input pair (s,)), and r is the vector of residual values, denoting the
difference between the values of the ground truth examples (input
pairs) and the model results m. Initially, r is equal to the ground
truth {1,...,1,—1,...,—1} of length |A| with values 1 for positive
example pairs, and —1 for negative example pairs.

We now explain the process of generating training data. We re-
quire the user to provide positive examples only. One does not need
to state negative examples, which can be difficult. However, if only
positive examples are used, the resulting meta-paths may character-
ize how the node pairs are connected by the largest number of meta-
paths, instead of how they are uniquely connected. Consider two pos-
itive examples: (B. Obama, M. Obama), and (G. W. Bush, L. Bush),
which can be predicted by the three meta-paths: 1) they have the
same children, 2) they belong to the same political party, and 3) they
are both US citizens. Although all these meta-paths describe the
relationship of the two node pairs, meta-path 1) is more rare and
important than meta-path 3). To reflect this, our algorithm generates
negative node pairs that are pertinent to the positive examples.

One simple way to generate negative examples is to randomly se-
lect nodes pairs from the KB. Unfortunately, these examples may be
totally irrelevant. For instance, a random pair (J. Cameron, Avatar)
is unrelated to the positive examples above. In our solution, the
number of negative examples is the same as that of the positive ones.
We randomly extract entities that share the same Lowest Common
Ancestor (or LCA) label in the class hierarchy as the entities present
in the positive pairs. In Figure 1, the LCA of the entities used in our
examples, namely B. Obama and G. W. Bush, is USPresident. We
then randomly select nodes that have the LCA USPresident (e.g.,
B. Clinton and R. Reagan in Figure 3). Similarly, since the LCA of
M. Obama and L. Bush is USFirstLady (Figure 1), two candidates
for negative examples are B. Ford and B. Bush (Figure 3). These
selected nodes are then combined randomly to form negative ex-
amples: (B. Clinton, B. Ford) and (R. Reagan, B. Bush). Although
this process might give us some false negative pairs, this chance is
shown to be low in our experiments.

Algorithm 1 details the procedure of obtaining the set of meta-
paths with their weights, for an input vector of positive example
pairs A. We denote all selected meta-paths and their scores in a
feature matrix: X = (my, ..., my). In this matrix, each column my
is the BPCRW scores of some meta path for all examples in A,
and k is the number of meta paths generated. For each meta-path
feature, we return its weight in another vector w. After initializing
the residual and weight vectors in Step 1, we obtain the first meta-
path by invoking GreedyTree in Step 2. This method, which
we will explain, returns the meta-path with the largest correlation
value. Steps 4—11, we iterate with the meta-path with the next largest
correlation.

Note that LARS iterates until every feature has been processed. In
our case, the number of features (meta-paths) is unknown, and it is
difficult to generate them efficiently. Hence, we modify LARS, and
incrementally build the regression model by using a new stopping
condition: we iterate until the residual r is negligible (i.e., |r| < &
in Step 4). In our implementation, traversing the entire space of
meta-paths just to find that no path has been found is practically
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impossible. So, we also establish a maximal number of iterations
— 50 in our experiments — that forces the algorithm to stop even if
convergence has not been achieved. This is enough, since most
models contain a lot of small meta-paths; having more than 50
features start to add noise to the model. In our experiments, this
threshold is rarely reached; F SPG terminates within 20 iterations.

In each iteration, we obtain the next meta-path (Step 6) having the
largest correlation with r, and put it to matrix X (Step 7). Next, we
compute the correlation of newly added meta-path feature with the
current residual (Steps 8), obtaining direction vector u and stepsize
Y:

u=xx"x)"'a"x"x)" ') (32)
+ corr — cos(mj,r) corr+cos(mj,r)

min B -

o<j<k | (17(XTX1)'/2) —mjTu’ (17 (X7 X1)!/2 + m;Tu

where 1 is a vector of 1’s of length k and min™ is the minimal
positive value. While these equations appear in LARS [4], we
made two changes. First, we use the existing feature matrix X
to heuristically represent the entire feature matrix. Second, when
computing Y, we also only consider the existing meta-path features
vectors, or (mj)o< j<x in the kth iteration.

Algorithm 1: FSPG(G,A)

Input: network G, example pairs A
Output: meta-paths Iy _, path weight vector w
r<{l,...,0—1}h w0 k< 0;
Iy, mg < GreedyTree(G,A,r) ;
k< 0;
while |r| > € do
k+—k+1;
Iy, my < GreedyTree(G,A,r);
X<+ XUmg ;
corr <— cos(my,r) ;
compute u, y using Eq. (3.2) ;
r < r—Xuy,
W< w+uy,
return 1y ;. w

L R 7. I I I SR
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3.2 The GreedyTree Structure

Next, we study how to find the meta-path my with the largest cor-
relation, by applying the GreedyTree algorithm. GreedyTree
has three major advantages. First, it can reduce the search space
by applying search heuristics. Second, when starting from multiple
example nodes, it minimizes the redundancy in computing the com-
mon path sequences that may appear, by using the tree structure to
store such paths. Third, the tree structure can be re-used for multiple
expansions in the run of the algorithm.

Let us illustrate the algorithm by using the previous example. The
positive example pairs are {(1,2),(3,4)} in Figure 1 and negative
example pairs are {(12,13),(14,15)} in Figure 3. The algorithm
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Figure 4: GreedyTree

works by expanding a tree structure, where each tree edge is anno-
tated with an edge type, and each tree node stores a list of node pairs
with their BPCRW values and a priority score S. Here, the list stores
tuples in the form ((u,v), o (u,v | IT)) where (u,v) represents a path
in the graph by its starting and current graph nodes, respectively; IT
is the edge-only meta-path starting from u to v. The edges of the
tree are edge types in the graph. ¢ (u,v | IT) is the BPCRW score
for this meta-path. We compute the value of S as a heuristic on the
correlation value, as follows:

S = Zu+ G(l't:V | H) ~r(u,*)
Zu o-(”:" | H>2 X ‘I“

B, (3.3)

where r is the current residual vector, u+ signifies the starting node
u in (u,v) which belongs to positive examples (for instance, u+ €
{1,3} in Figure 4), and r(u,*) is the largest value in the residual
vector for example pairs starting from u (initially r(u, *) = 1). B is
a decay factor ranging from O to 1, and L is the length of current
meta path. Unlike the homogeneous graph, there is no guarantee
that the current node is on the correct route to reach the target nodes
of the example pairs. We add this decay factor f3, to avoid the meta
path expanding to an infinite length. As shown in Figure 4(a) with
B = 0.8, initially the root of the GreedyTree contains all the starting
nodes in the input example pairs, and has S = 0.4. After one step
of moving in the graph in Figure 4, it passes through three types
of edges — citizenOf, hasChild, and memberOf — and generates three
new tree nodes in the GreedyTree (Figure 4(b)). It also computes the
priority score and all the BPCRW values. Then, it greedily selects
the tree node with the largest priority to expand — in this example,
we continue to expand the node through hasChild™! link, since it
has the largest priority score S = 0.64.

After this expansion, we see in Figure 4(c) that (1,2) and (3,4)
are already an input pair. Thus, we find a link-only meta-path IT:

hasChild hasChild—*
g J2STE, o T ? and we compute the actual value of the

correlation, as well as the resulting vector m on example pairs. If
this value of § is larger than the priority scores of the other two tree
leaf nodes (the upper bounds of their own correlations, i.e., 0.32),
then IT is the best meta-path currently found and is then returned
along with its m vector. If other priority scores are larger, then we
continue to expand the tree node with the largest score, and repeat
this procedure until this condition is satisfied or the tree cannot be
expanded.

We preserve the expanded tree structure for subsequent iterations
of Algorithm 1. Before resuming tree expansions, we need to first




update the priority scores of the leaf nodes, since the residual vector
r has been changed by the addition of a new meta-path feature. By
a linear scan of the node pair list in a leaf node, we can efficiently
compute the summation in Equation (3.3), and update the value of
S. Then, we continue to expand the tree starting from the node with
highest S.

Algorithm 2: GreedyTree(G,A,r)

Input: KB G, example pairs A, residual vector r
Output: meta-path IT having largest correlation with r, and its result
vector m
Data: pattern tree T
update priority scores of leaf nodes in 7" with r;
while 7' can be expanded do
M < node with largest score S in T';
m <« {0,...,0};
foreach ruple p in M do
if p.(u,v) € A then
| m(u,v) < o(uv|I);
if m has non-zero entry then
M.S < cos(m,r) (Eq. (3.1));
ifM.S > maxr jeaf S then
IT + the meta-path from root to M;
break;

e % N A ! B W N =

_ =
R o= S

else

_
B W

foreach ruple p in M do

foreach out-neighbor w of p.v on graph G do
e < link type from p.v to w;
if M has no child N linked by e then

‘ create new child tree node N of M ;

IT < the meta-path from root to N;
insert tuple {(p.u,w),o(p.u,w|II)) to N;
update N.S according to Eq. (3.3);

D e e e e e
= S © ® 9 & !

22 return [I,m

We present the detailed steps of GreedyTree in Algorithm 2.
First, we check and update the priority scores of leaf nodes changed
by new residual vector r (Step 1). Then, we expand the tree by
moving to out-neighbor nodes on the graph until a meta-path can be
found or the graph is completely traversed (Steps 2-21). We target
the tree node with largest priority (Step 3) and examine whether its
tuples are example pairs (Step 6). If so, we store BPCRW scores
in m (Step 7), compute the actual correlation value as M.S (Step 9),
and determine if we have found a proper meta-path (Steps 10-12).
If no example pairs are encountered (Step 13), then we extend each
node pair by moving to an out-neighbor (Step 15). We insert this
new pair with its BPCRW score to a child node (Steps 17-20), and
update its priority score (Step 21).

3.3 Phase 2: Node Class Generation

Existing methods (e.g., [10,20]) often assume that each KB node
has only one class. In complex and real KBs, nodes can have
multiple classes. For instance, Barack Obama is not only a president,
but also a lawyer and writer. As introduced, these node classes are
organized in a hierarchy. For example, in Yago (see Figure 1),
Leader and Writer are subclasses of Person. This increases the
number of possible paths for satisfying a meta-path. In the previous
section, the meta-paths generated do not specify node classes. Here
we present ways to assign node classes.

One option is to simply disregard the node classes. So the meta
path contains only edge types generated in Phase 1, without any node
class constraints. However, the link-only meta-path is generally too

common in a large KB, thus introducing more false positive results.

. liveln .
For instance, ? —— ? is a much more common meta-path than

Scientist 2vel", CapitalCity. Since link-only meta-paths are less
specific to input pairs, they will eventually impair the result quality.

A better method is to choose the classes which are the Lowest
Common Ancestor (LCA) in the type hierarchy. For instance, in Fig-
ure 1(a), the LCA of USPresident and Writer is Person. Another
example is that the LCA of Harvard and Yale is lvyLeague. This
way, if given some pairs of persons who graduated from Harvard
and Yale, we can generate meta-paths showing they both gradu-
ated from lvyLeague. Thus, for every KB node satisfying a certain
meta-path node, we generate LCAs for all its possible classes, and
use them in the model. The LCAs of KB nodes can simply be
recorded in each node of the GreedyTree. Thus, while we expand
the GreedyTree, we just need to find the LCA of the current node
and its parent node. This approach has the advantage of preserving
the same weights as the ones trained in Algorithm 1, at the cost of
only a bottom-up traversal in the class hierarchy.

Finally, we can combine the score of the classes on the hierarchy

in a tf-idf-like manner, for a given label @: score(@) = 10;{5;?)(;;)’

where #f (@) is the count, or frequency, of the label @ in the positive
examples, and of (@) the overall count of ¢ in the entire KB.

For instance, in the first node of the GreedyTree in Figure 4,
tf (USPresident) is 2 since it contains nodes 1 and 3 — as the la-
bels of nodes can be easily obtained from the type hierarchy in
Figure 1(a). On the other hand, of (USPresident) is 42, since there
are 42 nodes which have label USPresident in the entire KB, and
then score(USPresident) = 1.23, which is much higher than other
labels for these example nodes. In terms of performance, of can
be easily pre-computed by counting all the labels in the HIN, as a
pre-processing step.

We show in the next section that this selection mechanism im-
proves considerably the accuracy of the similarity model.

4. EXPERIMENTS

Datasets and setup. In this section, we perform experiments
on two representative datasets for online HIN: DBLP and Yago.

DBLP [11] is a bibliographic information network which is fre-
quently used in the study of heterogeneous networks. Our dataset [20,
25]is a subset containing scientific papers in four areas: databases,
data mining, artificial intelligence, and information retrieval. The
dataset has four classes of nodes: Paper, Author, Topic, and Venue.
It also has four edge types: authorOf, publishedIn, containsTopic,
and cites. It contains 14,376 papers, 14,475 authors, 8,920 topics,
and 20 venues. There are 170,794 links in total.

Yago is a large-scale knowledge base derived from Wikipedia,
WordNet, and GeoNames [17]. In our experiments, we use the
“CORE Facts” part of this dataset, which contains 4 million facts
(network links) of 125 types, made from 2.1 million entities. These
entities have 365,000 node classes, organized in a hierarchy tree.
A fact is a triple of the form: (Entity,relationship, Entity), e.g.,
(Barack Obama,hasChild, Malia Obamay).

We validate our algorithm’s efficiency and effectiveness mainly
by performing link prediction tasks (additional experiments on rule
mining and a user study are also presented at the end of this section).
We stress that our models are not only usable for link prediction,
but for a variety of other tasks, such as search and similarity joins.
We chose link prediction for the evaluation because it provides for a
measurable and objective way to evaluate the similarity models and
algorithms.

For a certain type of link in Yago, for instance citizenOf, we
remove all such links and try to predict them with the model that
our F'SPG algorithm learns. We randomly select a number of pairs
of objects as training data, and validate the model using a test set
of an equal number of pairs. In our experiments, we set the value
of € in Algorithm 1 to 0.01. We have found that even low values of



Table 1: 5 most relevant meta-paths for Yago - citizenOf

meta-path w
Person 22N, City locatedin, Country 5.477
Person e, Country 0.361
Person M University locatedin, Country 0.023
Person ied!n, City locatedin, Country 0.245
Person 22 City happenedin * Event happenedin Country  0.198

this parameter allow for a reasonable number of features selected,
usually lower than 20. If € is set to a higher value, the models will
be smaller but also less accurate. We compared FSPG with PCRW
to models which generate paths of finite length in {1,2,3,4}, as
used in [10]. The PCRW models use the logistic regression model
to combine these meta-paths, in order to be coherent with previous
work in the area and to allow fair comparisons. For node class
selection (Section 3.3), we use the LCA of entities’ classes. Finally,
unless otherwise specified, the similarity function was BPCRW with
a value for o of 0.5. We found this value approximates both PC and
PCRW well, and also that it helps to keep the vector of meta-path
similarity values normalized. We use 3 as 0.6 in GreeyTree to avoid
the meta path expanding infinitely.

Effectiveness. We present in Figure 5 the results for link pre-
diction for three types of links: citizenOf and advisorOf for Yago,
and authorOf for DBLP. For each of these links, we generated 100
training and 100 test pairs, as described above. Each figure shows
the Receiver Operating Characteristic (ROC) curve, where the larger
area signifies a larger accuracy in prediction.

The figure shows that fixed-length PCRW suffers from several
issues. When the maximum length is too small (1 or 2), meta-paths
cannot connect example pairs, and as such the model is not better
than a random guess and the model will have low recall. When
the maximum length is too big, the model introduces too many
meta-paths. For length 3, there are 135 meta-paths, and over 2,000
for length 4. In DBLP, length 4 (measured by link hop) meta-
paths — equivalent to the method presented in [20] — for authorship
prediction work poorly when training pairs are randomly chosen,
due to the low number of paths connecting them.

FSPG is clearly better in predicting the links, and it generates
only a limited number of meta-paths. For instance, the citizenOf
link in Yago has a model of only 15 meta-paths. Moreover, these
meta-paths are highly relevant and serve as good explanation of the
similarity links. Table 1 shows the most relevant 5 meta-paths for the
citizenOf similarity model. Unsurprisingly, the meta-path illustrating
the fact that a person has been born in a city of a country is the
best predictor of citizenship, but other, longer, paths are also highly
relevant. Compared with PCRW with maximum length 2, it has
higher recall because it also detected longer important meta-paths,

. happenedin—t
for instance, Person Event

Country. We found that in Yago some facts are missing. For

. . . . located| .
instance, a fact denoted by the direct link Paris 22, France is

missing. 2 In this case, our algorithm can be useful to predict it via

. h din~! h dl
longer paths, such as City JEPPEneTT s Event —2Penecn, Country.

Whereas considering direct links is widely done when querying
ontologies, multi-hop meta-paths can in some cases improve query
result accuracy. For instance, in citizenOf prediction (Figure 5), only
one type of direct links between people and country exists, namely,

bornin City happenedin

2 Although other 2-hop links from Paris to France exist, they were not

happenedin~?!
PP Event

happenedIn

ranked as high as City Country.

liveln. As a result, most information in predicting the citizenship is
lost when limiting to direct connections, causing low recall and AUC
score. For advisorOf prediction, there is even no direct link between
the example pairs. This means resorting to multi-hop meta-paths is
necessary.

Efficiency. Figure 6 show the running time of FSPG compared to
models with fixed length, and when varying the number of example
pairs given as input. It can be observed that generally, the algorithm
running time increases sub-linearly in the number of example pairs.
The increase is due to the PCRW random walks which need to be
performed concurrently for each example pair, but the number of
meta-paths in the model does not increase at the same rate.

In Yago, the algorithm performs better than models of paths longer
than 2 by a factor of up to 2 orders of magnitude. However, the
models of short path length have limited predictive power, despite
their better running time. In comparison, our algorithm is capable of
finding even longer paths, for an increase in accuracy without much
sacrifice in running time.

In DBLP, the running time of FSPG is comparable to length 5 for
smaller test set sizes, and comparable to length 4 for larger example
set sizes. This is not unexpected, considering that the DBLP KB is
very small in size — both as number of types and as graph size — and
fixed length models will have reasonably sized number of features.
However, even if the running time is worse, we already saw that
FSPG on DBLP has generally better accuracy, making it very useful
even in very small KBs.

Input set size and precision@k. We turn now to evaluating
the influence of the input set size on the accuracy of the models. We
compare in terms of Area Under the Curve (AUC) two methods,
our FSPG algorithm and PCRW of length 2. We chose length
2 because it was consistently the best performer out of all fixed
length models in Yago. The evaluation was done on the same Yago
node classes, advisorOf and citizenOf. In Figure 7 and Figure 8,
“a-FSPG" represents the advisorOf prediction using FSPG while
“c-FSPG" represents for citizenOf prediction using F SPG. The same
abbreviation rule also applies to “a-PCRW" and “c-PCRW".

Figure 7 shows the results. It can be seen that the set size does
not greatly influence the accuracy of the model, which suggests that
even in more realistic scenarios in which users or experts give very
few examples the models will be reliable. It can also be seen that
FSPG keeps its advantage over PCRW of fixed length, regardless of
the input set size. Please note that, for each positive input set size,
we have generated an equal number of negative example using the
methodology described before.

Figure 8 shows the difference between FSPG and PCRW of path
length 2, with an input set size of 100 negative and positive pairs,
in the following scenario: we sort the results by their similarity
and check the number of true positives at a given value of k in the
sorted list. FPSG achieved considerably high precision of predicted
pairs at low values of k, suggesting that this method is practically
usable especially since similarity search results sets are usually low
in numbers. For cases in which prediction is easy — e.g., citizenOf —
PCRW becomes competitive only at high values of k. This does not
happen in the case of advisorOf, as it is harder to predict.

Improving expert meta-paths. Our method can also be used
to improve on expert meta-path models, and we show here how
it behaves for authorship prediction in DBLP. In our experiments,
we started from the meta-paths defined by experts in DBLP, as
explained in [20]. Starting from the already existing model of meta-
paths, we first build the corresponding GreedyTree, we compute
the residual vector r and “resume” the execution of FSPG.



(a) Yago - citizenOf

(b) Yago - advisorOf

(c) DBLP - authorOf
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We show the resulting ROC curves in Figure 9. It can be seen that
starting from expert meta-paths slightly improves the accuracy of
FSPG, but greatly improves the accuracy of the expert-only model.
This is because the algorithm is able to generate relatively long meta-
paths, which are missed by experts, as partially shown in Table 2.
This result shows that the algorithm can readily be employed as
an expert tool, to suggest meta-paths which might be missed by
experts.

Class label selection. Figure 10 shows the accuracy of our
model, depending on which class selection from Section 3.1 is cho-
sen. Each training set was generated as before, with corresponding
negative pairs. It can be seen that not restricting the class nodes on
meta-paths significantly impacts the accuracy. The #fof method of
generating class labels is better for high precision queries, but LCA
is better than it for higher recall rates.

Influence of a. To illustrate the difference between the choice
of o values, we illustrate in Figure 11 their power in predicting
links of Yago, given a value of & for the BPCRW, for two types of
links: advisorOf and citizenOf. The choice of o has a considerable
impact on the link effectiveness. It also shows that — even in the
same knowledge base — there is no single choice of o which always
“wins” over the other similarity models, and it highly depends on
the example pairs being given by users. For instance, the best value
for advisorOf seems to be 0.8, while for citizenOf it is 1 because they
have the largest AUC score.

Due to the low running times of FSPG the best value of o can
simply be generated by a loop over reasonable values of o incre-
ments, e.g., every 0.1, and choosing the model which has the best fit
with the training pairs.

HeteSim. Figure 12 compares BPCRW and HeteSim [15,16] in
terms of relationship prediction. As explained in Section 2.2, Het-

eSim is not supported in FSPG, and we study HeteSim on one single
bornln_ ~. locatedIn
City

meta-path only. We select Person Country

for citizenship prediction, since it is the most important meta-path

. .. raduateFrom
(Table 1). For advisor prediction, we use Person graduaterrom,

. . kAt! L . .. .
University work?® Scientist, since it is also the most important

one as found from another experiment. We observe that BPCRW is
comparable to HeteSim. Moreover, the prediction quality is much
worse using a single meta-path than considering multiple meta-paths.
In Figure 5, for citizenship prediction, using a single meta-path
yields 34% recall, while using multiple meta-path generates 65%
recall. This shows why it is important to use multiple meta-paths,
as adopted by our approach.

AMIE. The FSPG method can also be used for mining association
rules in heterogeneous graphs, since the meta-paths associated to a
given node pair can be interpreted as an association rule for that pair.
To evaluate this use case, we compare FSPG with AMIE, which is
used to generate association rules in knowledge bases.

We generate the association rules for the citizenOf, advisorOf and
ivyLeagueAlumnus links 3 , and show the ROC curve results in
Figure 13. We first evaluate the association rules by performing link
prediction, i.e., we use the association rules generated by AMIE and
combine them through logistic regression — just as with the paths
generated with FSPG. Our method shows generally better ROC
curves for citizenOf and advisorOf. For citizenOf, AMIE produces 8

association rules, while FSPG can produce 3 more association rules

. B . ated] . ated] .
such as Object 222%™ Object locatedin Object locatedin Object.

For advisorOf, AMIE produces 4 association rules and FSPG

3This link does not exist in YAGO. We simulate it by creating a link
between every pairs of graduates from Ivy League universities.

Table 3: Missed association rules in AMIE for advisorOf

meta-path

influence!
Person ————— Person

diedin_ ~.  diedIn~?
Person —— City ——— Person

orkAt . . raduatedFrom
Person 2% University Eracuatec’™®™, Person
liveln isCitizenOf 1
Person — Country ——="__, Person

. graduatedFrom

adds 4 more, such as Object Object Object.
Table 3 shows other association rules missed by AMIE and generated
by F'SPG for advisorOf.

However, the most important advantage for FSPG lies in its ability
to generate rules for the personalized case, where few pairs are given
as input. We illustrate this on the link ivyLeagueAlumnus — which
does not exist in YAGO. We input these pairs connected by this
virtual link ivyLeagueAlumnus. AMIE will look for global rules, and
thus generates general rules which fail to distinguish Ivy League
alumni from the alumni of any other university. In contrast, our
method achieved a ROC of 0.989, and was able to generate more
specific association rules such as

worksAt

. raduateFrom raduateFrom™ .
Object s, lvyLeague g Object or
isAffiliatedTo isAffiliatedTo™"

Object ——— Organization ————  Object.

User study. Finally, we conduct a user study to determine whether
meta-paths learned by F'SPG are of interest to users.

We use the data from the Time Magazine’s “100 Most Impor-
tant People of the 20th Century” [21]. Ten volunteers, who are
students and research assistants of the CS department of HKU,
are asked to select pairs of similar persons. The volunteers have
selected 10 pairs of people which are similar, e.g., pairs such as
(Franklin D. Roosevelt, Theodore Roosevelt) and (Mao Zedong, Ho
Chi Minh). Based on the input pairs, we use FSPG to generate the
meta-paths. After the model is trained, we shuffle the most relevant
meta-paths with randomly selected, but reasonable, meta-paths and
ask the same volunteers to rank them into three categories: Rele-
vant, Somewhat Relevant, Not Relevant. We assign each answer
a point value of 1 for Relevant, 0.5 for Somewhat Relevant and 0O
for Not Relevant. We then average the ranking over all question for
the FSPG-returned meta-paths and the most well-ranked random
meta-path for each question. The FSPG generated meta-path score
average was 0.471(c = 0.229) and for the random paths it was
0.285(c = 0.100). Statistical significance was estimated using the
one-tailed Student’s t-test, yielding a p-value of 0.09. This value
is satisfactory, taking into account the fact that the users were not
always familiar with the historical figures.

At a qualitative level, the result also showed that our generated
meta-paths rank consistently higher than the random meta paths. For
instance, the most important meta path between Franklin D. Roo-
sevelt and Theodore Roosevelt is A M)
isPoliticianOf !

country

B, and the most important meta path between Mao
influence™"

Zedong and Ho Chi Minh is A person

influence

S. RELATED WORK

Knowledge bases. Yago [17] is a semantic knowledge base
derived from Wikipedia, with more than 10 million entities (or
nodes) of different types. Links among these entities represent more
than 120 million facts about them. Constructed from Wikipedia
and the Web in a similar way, DBpedia [2] is another widely used
knowledge base. Since both entities and links have a variety of
types, a simple homogeneous graph (with only one type of node



Table 2: Missed meta-paths by experts in DBLP authorship prediction

meta-path
authorOf cites publishedIn publishedIn™" ites aut/erf’l
Author =5 Paper <% Paper Venue Paper % Paper ———— Author
authorO, ites containsTopic containsTopic™" ites authorOf~!
Author —f> Paper % Paper P Topic P Paper <% Paper —f> Author
authorOf ites publishedIn publi.vlwdln" containsTopic containsTopic™ 1 authorOf~ 1
Author =" Paper =% Paper 2220 Venue Paper Topic Paper Author
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Figure 13: ROC of FSPG and AMIE

or edge) is unable to capture the rich information contained in a
knowledge base.

Generating Meta-Paths. The issue of generating good meta-
paths has not been satisfactorily addressed. A simple method is to
first enumerate all possible meta-paths, by traversing the schema
graph [20], and then use the paths as features to train a regression
model that best fits the user-provided example pairs. However, the
cost of generating all path patterns is prohibitive when the number of
node types and edge types is large. Second, the high dimensionality
of the resulting data means that, for each feature and example pair,
we need to generate the similarity measures by performing the
random walks described in Section 2.2. Moreover, the number
of features is highly likely to introduce noise due to the curse of
dimensionality [6]. On the contrary, our method only generates
relevant meta-paths. The same authors in [20] also suggest to hire
domain experts to define meta-paths. As we have explained, this
may not be feasible for very large HIN. Another problem with this
approach is that the paths defined in this way are global. In our
solution, users can participate in the process of generating meta-
paths by suggesting example pairs.

Another approach for generating meta-paths is proposed by [10].
Their solution enumerate all the meta-paths within a fixed length /.
However, it is not clear how / should be set. More importantly, / can
significantly affect the meta-paths generated: (i) if / is large, then
many redundant meta-paths may be returned, leading to curse-of-
dimensionality effects; and (ii) if / is small, important meta-paths
with length larger than / might be missed. Our experiments have
shown that the running time of the meta-path generation process
grows exponentially with length /. Moreover, the accuracy can
also drop with increase in /. Our solution does not require users to
provide the value of /.

Link Prediction. Since the main focus of our work is to gener-
ate meta-paths, we only use link prediction to quantify our advan-
tage compared with the existing meta-path generation methods, as
demonstrated in Section 4. Compared with [14], our method predicts
the relationship between different entities, rather than predicting the
types of entities. [13] used the factorization of a three-way tensor
to perform relational learning; it only considered simple node types

and is not applicable to our experiment which has both complex
node classes and edge types.

Node similarity. Tomeasure the proximity between graph nodes,
neighborhood-based metrics such as common neighbors and Jac-
card’s coefficient were proposed [12]. Other widely-used graph-
theoretic measures that are based on random walks between nodes
include personalized PageRank [3], SimRank [8), hitting times [27],
and random walk with restart [22]. These measures do not consider
the class labels of nodes and edges present in a HIN. Several sim-
ilarity metrics have been designed for HIN: path count (PC) [19]
and path constraint random walk (PCRW) [10]. We propose a gen-
eral form of these two metrics, called the BPCRW. As discussed
in Section 2.2, PathSim [20] and HeteSim [15, 16] are two other
recently-proposed meta-path-based measures.

Query by example. We studied the problem of using example
node pairs to generate meta-paths. These node pairs can also be
used to facilitate query evaluation. In [7], Jayaram et al. examined
how to find query graphs that can yield node pairs. It would be
interesting to see how our meta-path—based similarity metrics can
be used to enhance their solutions. In [23,26], the problem of
generating queries from user-provided example query results in a
relational database was investigated.

6. CONCLUSIONS

We examined the problem of generating meta-paths from a given
set of node pairs, using a general form of meta-path-based measures.
We proposed the FSPG algorithm, and developed GreedyTree to
facilitate its execution. Our experiments showed that FSPG gener-
ates important meta-paths efficiently. In the future, we will study
the theoretical feasibility of meta-path selection for other non-linear
similarity functions. We will also examine query algorithms for sim-
ilarity search and join on large HINs, based on meta-path similarity
measures.
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